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ABSTRACT 

A system of finite difference equations for storm surge prediction has been constructed, using forward time 
differences. 

The scheme was tested for special simple geometrical configurations, and it was found to be stable without intro- 
ducing smoothing operators. The variation with time of the total energy was, in each case, the test of stability. 

The small-scale oscillation of the energy with time (characteristic of forward difference schemes) was studied in 
detail. A method of reducing this effect is suggested. 

A completely implicit finite difference scheme is discussed from the point of view of stability and convergence. 
It is shown how the requirement of a convergent iterative process actually introduces a severe restriction on the ratio 
ALIAS, thus canceling the advantages of the otherwise unconditionally stable implicit schemes. 

1. INTRODUCTION 

A large number of papers dealing with the storm surge 
problem have already been published. The nonlinearity of 
the general equations has been eliminated by most research 
workers, thus facilitating the study of the simplified sys- 
tem, under idealized initial and boundary conditions. 

The numerical approach to the remaining linearized 
equations, however, varies widely. Generally centered 
differences are used to approximate space and time 
derivatives. In order to obtain conservation of energy and 
well behaved fields, various smoothing operators or fric- 
tional terms are included in the numerical equations. 
However, so far, no general criteria have been obtained to 
the best knowledge of the author. 

Such a situation indicates the need of searching for a 
more suitable finite difference scheme testing its accuracy 
and efficiency. 

In  the following paragraphs the computational stability 
and convergence of a finite difference analog involving the 
simplest possible mathematical assumptions will be dis- 
cussed. This will be done by comparing the numerical 
results to analytical solutions. for idealized physical 
models. 

2. THE DIFFERENCE SCHEME 
As the principal aim of this paper is the study of the 

behavior of a numerical solution, and as the proper choice 
of frictional terms is another problem still unsolved, they 
will be omitted in the following paragraphs. 

1 This research was performed under U.S. Weather Bureau Contract No. Cwb-11207. 

The linearized system of equations for the storm surge 
problem becomes (e.g., Welander [lo]) : 

dU 3 7  h(z Y) bP" -=fV-gh(x, y) --A - at ax p ax 

au av 3==- ___. 
bt bx by 

Symbols are defined as follows: 

U,V: vertically integrated velocity components ,in the 

7 :  elevation of the free surface over the undisturbed 
x and y directions respectively. 

level. 
h(x,y) : depth of the sea bottom. 

p": prescribed atmospheric pressure. 
g: acceleration due to gravity. 
p :  density of the water. 
f: Coriolis parameter. 

System (1) will be expressed in the following difference 
f o m  : 
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where the indices (J ,  K ,  n) denote a point (x, y, t)=(JAx, 
KAY, nAt) of the discrete grid, and Ax=Ay=As. 

This forward centered scheme mixes explicit and im- 
plicit equations, but when evaluated in the order indicated 
in (2), the system itself becomes explicit and no iterative 
process is required. 

Furthermore, from the computational point of view, 
economy is achieved by the fact that no storage of old 
fields is necessary, because after each field has been evalu- 
ated its previous values are not used in the remaining 
equations. 

For similar reasons, not all the fields are evaluated a t  
the same points. Transport components are computed a t  
even (J+K) points, and height values a t  odd ( J f K )  
points, for all n. 

By an analysis similar to the one discussed by Platzman 
[6], the stability condition for system (2) is 

-+.fat At2 4-f2At2 
A S ~ -  2-jAt ghmm - < -- 

where h,,, is the maximum value of the depth. 
‘ 

For all practical purposes this condition reduces to 

Due to the fact that forward differences in time are 
used, no special starting procedures are needed, once the 
initial state of the fields has been specified. 

To simulate a closed region, the transport component 
normal to the “walls” of the basin has to vanish when 
working in a rectangular region, e.g. 

U=O for x=O, L, 
V=O for y=O, L,. 

These conditions are easily applied to the last two 
equations of system (2), but some additional procedure 
must be considered for the evaluation of the centered 
differences of the transport in the continuity equation. 

Welander [lo] and Harris and Jelesnianski [2] sug- 
gested the addition of auxiliary lines of zero velocity 
points surrounding the real basin, to be used for the 
evaluation of q values on the boundaries. However, 
Harris and Jelesnianski did not actually use this scheme 
in their calculations, pointing out that the corner points 
introduced could become source points for small-scale 
disturbances not germane to the problem. 

Their prediction has been verified in this study. It 
can be seen in figure 1B how the effect of reflection from 
the boundaries, that occurs earlier (because of the shorter 
distance) wherever the fictitious “shore points” are not 

I I 1 I 1 I I I 1 I I 

FIGURE 1.-(A) Initial disturbance for a rectangular basin. No 
forcing functions. The lines are contours of equal height (in cm.). 
(B) After 12 time steps with auxiliary zero velocity points sur- 
rounding the basin next to each 7 point belonging to the real 
boundary. (C) After 12 time steps when forward diffcrences were 
used in the continuity equation for evaluation of 7 on real 
boundaries. 



152 MONTHLY WEATHER REVIEW Vol. 96, No. 3 

utilized, is being propagated into a rectangular basin, 
with the consequent distortion of the fields. Therefore 
another method was tried. 

Figure 1C shows the free oscillation of the same initial 
disturbance, after the same number of time steps, where 
the auxiliary lines were removed and the q values a t  the 
corresponding points evaluated by forward differences 
of transport mesh points lying within the real basin. 

Further numerical experiments were carried out in order 
to study the behavior of this boundary scheme. 

In  a rectangular region of constant depth, when no forc- 
ing functions are acting, and no Coriolis term is considered, 
an initial sinusoidal disturbance will be propagated through 
the basin, satisfying the wave equation 

The corresponding solution is: 

q(x, y, t)=l]o.cos ffX*COS py-cos at (5) 
where CY and p are 

m?r r?r 
LZ L, 

CY=-,  p=-i m,r integers, 

in order to satisfy the boundary conditions 

The period of oscillation is given by 

Several cases were solved numerically under the condi- 
tions previously specified and for different values of m,r. 
The initial state was given by (5) with t=O. 

The resulting fields were behaving according to the an- 
alytic solution (5) even after a large number of reflections 
at  the lateral boundaries. 

Figure 2 corresponds to mode (1 , l ) .  With the time step 
used in these computations, T=25.3 time steps. The 
numerically obtained values of 7, as a function of time at a 
given point, are plotted. As can be seen the period agrees 
with the value given by ( 6 ) .  

In  order to test the scheme in a case in which one of the 
boundaries is not a coordinate line, the same problem was 
solved for a basin in the shape of a right-angle triangle of 
two equal sides a (fig. 3). In this case an analytic solution 
exists, to wit: 

. 

d x ,  Y, t ) = 7 1 o *  71rn,P(X, Y) cos [.rn.Ptl 

with 

The difficulty that arises in a numerical solution is the 
application of the condition for zero normal transport 
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FIGURE 2.-7 field a t  z=O, y=24 As, for a (1,l) mode oscillating 
freely in a rectangular basin of constant depth. Theoretical period, 
25.3 At. 
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FIGURE 3.-Arrangement of grid points in a triangular basin. 

component on the boundary line m. This gives a relation 
between both transport components, which in this case 
reduces to 

u+v=o (9) 

but not a definite value for either one of them. 
In the interior of the basin, and on the lines AB and m, 

the usual scheme can be applied. Assuming that all the 
fields have already been computed at  all those points f o r  
time n+l,  the following procedure was used for the 
boundary line E, where the condition (9) is given. The 
equations for a velocity point of that line were written 
using forward differences for the space derivatives. Then 
if 5 indicates an 9 value for the boundary E, consisting 
originally of only velocity points, 

At - 
U?,+F! =U?, &.fat V?, K- g h ( ~  J , K - v ? ~  ;, K) (10) 

At - Vn+l- 
J .  K - v?, K-fAt u?,% - $7 h(V?,?F!+ 1-71 J .  K) 

where the indices, (J, K )  take the values (J= R + 1 - K, K )  , 
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R being the number of grid points in the x or y direction. 
The two equations (10) and the condition (9) 

UJ,+i + V?,% = 0 

form a system of three equations and three unknowns. 
The determinant of the coefficients is different from zero 
and the system has therefore a nontrivial solution. It 
provides the velocity values on the boundary x, and 
the auxiliary 7 points at  time (n+l)At. 

This scheme was used in the numerical solution for the 
case of an initial disturbance 

v(x, y, t=O)=r]o. cos --cos "1 - (11) 

oscillating freely in a triangular basin of constant depth. 
According to (S), the period of this m=1, p = l  mode 

corresponds to 42 time steps, with the parameters used in 
the computation. This was also the value obtained from 
the numerical computations. 

After 126 time steps (3 complete periods) the g field still 
satisfied the relation (ll), with a maximum deviation of 
0.2 percent from the initial configuration. 

The boundary scheme mas therefore considered satis- 
factory. It is hoped that the method can be generalized for 
boundaries of irregular shape. 

3. THE DIFFERENCE EQUATION FOR THE ENERGY 

An accurate solution of the primitive differential equa- 
tions must conserve energy as long as no external forces 
are acting on the system. An approximate solution ob- 
tained from finite differences should also conserve energy, 
while nonconservation can indicate an instability in the 
calculation. 

For most centered difference schemes one can define the 
energy integral in such a way that conservation of energy 
is automatically fulfilled as long as the calculation is stable. 

The main objection (see for example Harris and Jelesni- 
anski [3]) against non-time-centered schemes like (2) is 
that there is no clear way of defining and calculating the 
energy balance. This is due to  the fact that even though 
each field can be labelled with the same time step index 
(as in (2)), they actually represent the situation of the 
system a t  slightly different times. Therefore, it was con- 
sidered desirable to  go more deeply into this problem, and 
to try to suppress or estimate those spurious variations 
of the total energy, which although inherent in the scheme, 
do not indicate any instability. 

The energy relation corresponding to system (1) is: 

[ =: a 

+$c (gg+i pa)M. ndl = O ,  M= Ui+ Vj (12) 

where S is the surface area of the basin and C its contour. 
The last term, involving the normal transport components 
to  the boundaries, will cancel in the case of a closed basin. 

Since the transport and 9 fields are evaluated only a t  
discrete points, the energy balance must be solved by 

numerical quadrature. With the staggered grid used in the 
computations, it seems natural to  replace the integrals by 
summation over elements of triangular shape covering the 
whole basin. By such a procedure, a t  any given time: 

and similarly for the other terms. The length of the basin 
is given by (R-  1)As and (T-  1)As in the x and y directions 
respectively . 

The computational difficulty arises in the evaluation of 
the time derivative. In  the finite difference analog (2) 
forward differences were used. On the right hand side of 
these equations there appear terms evaluated a t  time n 
and n + l ,  and the arrangement differs from equation to 
equation. However, the contribution of each field should 
be consistently centered in time so as to  obtain a value 
for the energy that will represent the shape of the system 
at a unique and well defined time. By comparison of 
(12) with the analogous invariant that can be deduced 
from the difference equations (a), the following scheme 
was adopted: 

(EN)"= 3 (EKIN)"-l+(EKIN)" 
4 

(EPOT)"-l+3 (EPOT)" (14) 
4 + 

where (EN)" represents the sum of potential plus kinetic 
energy as assigned to time step n, and 

E P O T = ~  Y, ( 9 ~ , g ) ~ s * .  
J K  

The expression F denotes the summation procedure 
indicated by (13). The upper index in expression (14) 
indicates the time step. In  addition 

(where (pa) is interpolated from the corresponding 
values at  n and n+ 1). It must be stressed that procedure 
(14) does not represent any form of smoothing. It is purely 
an attempt to combine the transport and I) fields in such 
a way as to  eliminate or decrease the difference of phase 
inherent to formulation (2). 
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The effect of the adoption of scheme (14) on the be- 
havior of the energy can be studied by applying it to  a 
very simplified model. A one dimensional channel of 
constant depth is considered, in which the fluid is oscil- 
lating freely. 

The differential system of equations reduces to : 

brl=-- dU 
a t  ax  

The finite difference analog similar to  (2) applied to 
this system gives: 

At ?;+I- -r].r-= n (u;+ 1 -u;- 1) 

The solution of which can be written in the form: 

q;=No (cos mp+ 

U;=- 2No sin n+ sina JAs ,  
J4-p2 

where 
At r- p=-dgh sin aAs; 4=arc cos ( 1 - i ~ ’ ) ;  

a=- (m an integer). 

As 

L 
mn 

The initial conditions assumed for this system are: 

UJ( t = 0) = 0, 
?j ( t=O)=No COW JAs. 

Equations (16) can be used for the evaluation of the total 
energy, according with its definition (14). After some 
algebraic manipulation the expression obtained is : 

+$ (3-p2) cos Zn+}. (17) 

C is a constant resulting from the summation implied in 
(14) and that depends on the total number of grid points 
in the grid. 

It can be seen from expression (17) that oscillations of 
period T=rAt/q5 appear superimposed over a constant 
value for the energy. If (14) is an accurate representation 
of the energy, the amplitude of these oscillations should 
be, of course, very small or zero. Figure 4 describes the 
behavior of these spurious” oscillations. Their amplitude 
and period depend on p, which itself is determined by the 
characteristic wavelength of the imposed motion and the 
dimensions of the channel. In terms of the numerical 
scheme, this means that p is fixed by the number of grid 
points per wave as used in the computations. 

From figure 4 it may be deduced that the amplitude of 
the “noise” decreases, and its period increases, with the 
number of grid points per wave, and that its influence is 

2 3 0  
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FIGURE 4.-Behavior of the time dependent oscillations superim- 
posed on the energy defined by scheme [14] as a function of the 
number of grid points per wave in the discrete system. 

negligible (under 2 percent) when each wave is resolved 
by a t  least 8 grid points. The oscillations become important 
when less than 6 points are assigned to each wave; but 
this is in any case the critical number of grid points that is 
necessary to  determine a wave [4]. Waves shorter than 5 
As are not properly resolved by numerical schemes in 
general. 

The accuracy of the value predicted by expression (17) 
can be checked by treating numerically the same physical 
system for which this formula was obtained. Figure 5, for 
example, represents the total energy of such a system, 
obtained by the numerical solution of equations (15) , 
when the number of grid points per wave was 8. The 
periodic character of the oscillation of the total energy is 
evident. I ts  amplitude is 1.9 percent as compared with the 
value of 1.6 percent given by (17) (see fig. 4). The period, 
6.1 steps, is exactly predicted. A similar good agreement 
is obtained for other values of the parameters shown in 
figure 4. 

As pointed out by Harris and Jelesnianski [3], the critical 
test of the stability of computation in the storm surge 
problem is conservation of energy. The present analysis 
shows the behavior of a procedure like (14), that involves 
a correction of the time shift between kinetic and potential 
energy when forward differences in time are used for the 
numerical scheme. An easy analysis of the energy balance 
is therefore possible, and the main objection against the 
use of forward differences, as in Fischer’s [l]  scheme, or in 
the one presented in this paper, is removed. 

4. CONVERGENCE 

A first check of convergence of the numerical scheme to 
the solution of the dserential equations was already 
shown in section 2, when the results of free oscillations in a 
rectangular and triangular basin of constant depth were 
discussed. There, the model reproduced the analytical 
solution of the wave equation to a high degree of accuracy. 
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FIGURE 5.-Total energy of a rectangular basin of constant depth 
oscillating freely with 8 grid points per wave in the 2-direction. 
(All variables independent of y). 

In  order to  test the behavior of the scheme for a system 
under the action of an external forcing function, a one 
dimensional solution given by Proudman [7] was chosen.2 

The solution of the equations of motion in the case of a 
semi-infinite channel of constant depth is given by 

where 

and f ( t - y / V , ) ,  is any function that represents a disturb- 
ance of atmospheric pressure advancing at a constant 
velocity V,. f( t-y/U,) is the same function of the argu- 
ment (t-y/U,). The coordinate y is taken along the length 
of the channel. For the numerical experiment the follow- 
ing expression was used 

f ( t - $ ) = %  { l-ttanh (2 (t-p)-l)]}- 

(19) 

yo is the initial position of the “pressure front” relative 
to the closed boundary of the channel. k is a parameter 
that determines the steepness of the hyperbolic tangent 
curve. A value of this slope which is too high is liable to 
excite parasitic waves, discrete systems being unable to 
represent sharp gradients, which involve relatively large 
amplitudes of short wave components. Several trials lead 
to  k=1.5 and a width of the pressure step, L,=8As. 

Both numerical and analytical solutions were obtained 
for the same values of the parameters. To  simulate a semi- 
infinite channel with the computational scheme, a long 
and narrow basin was considered, with no variation of 
variables along the x-direction. The pressure front ad- 
vanced towards the basin through the closed boundary at  
y = 0, with a velocity V ,  = 14 m./sec. and the computa- 
tions were terminated before reflections from the second 
boundary (located at  infinity in the analytical model) 
could be propagated into the region of interest. 

2 This same solution was already used by Platzman 151 for preliminary computations 
related with his work on Lake Michigan. 
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FIGURE 6.-7 field after 41 time steps of integration. The dotted 
line indicates the position of the pressure front over the channel a t  
the time under consideration. 

Figure 6 shows the final results. The numerical experi- 
ment was carried out for three different values of incre- 
ments: As and the corresponding maximum value of At 
resulting from the stability condition; As and At/2,  and 
As12 and At/2, in order to  estimate the dependence of the 
truncation error on the space and time intervals. The con- 
vergence of numerical results to the analytical solution is 
encouraging. 

A variety of other cases, for which no analytical solutions 
are available, were also studied. Among them: basins of 
linear, parabolic, or exponential bottom topography. The 
water was oscillating freely or under the action of wind or 
pressure, which constituted the external forcing function. 
In such situations the actual test on the stability of the 
numerical scheme was the conservation of the energy or 
its balance by the work exerted on the open system. I n  this 
sense, also for these cases scheme ( 2 )  proved to be stable. , 

5. CONCLUSIONS 
A careful study of the stability and convergence of the 

finite difference analog ( 2 )  shows that smoothing of the 
fields is not necessary when such a scheme is used. 

The discussion of section 3 indicates a way of evaluating 
a representative energy of the system when velocities and 
heights are computed with a lag in time, removing there- 
fore the only serious objection for the use of forward 
differences in the numerical solution of storm surges 
problems. 

The considerable saving of computing time in the use of 
the scheme here presented can be an important factor for 
its adoption in numerical research or in actual forecast. 

APPENDIX 
AN IMPLICIT DIFFERENCE SCHEME FOR THE PRIMITIVE 

E Q U A T I O N S  O F  M O T I O N  

Forward differences in time, and centered differences in 
space can be applied to  system (1) in the following way: 

At 
2As U?,? = UF, K - 4 3  ~ ;, K - d m ,  K )  + (1 -0) 

‘(4?+1, K - + ? - I , K )  1 + f A t {  ev?,+k+ (l -e)V?,K 1 
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+ (1 -e)(v;, K+i-V?, K-  1 )  ) 

where all the symbols have the same meaning as before, 
and 

~ J . K = J & T J *  K. 

e is a parameter such that O I e I l .  

An analysis of the stability of such a system shows that 
when 0 I e<%, the numerical scheme is unstable, and if 
% 5 0  I 1 , the numerical scheme is unconditionally stable. 

Therefore, with e=1 this finite difference analog will 
have the interesting property that At is not limited in size 
by stability considerations (invdving As), and only by 
desired control of truncation error.3 However, since the 
system is implicit, some iteration process must be used for 
the numerical integration of the difference equations. 

It is useful to consider the differences between two 
successive iterations : 

with the left upper indices indicating the sequence of 
iteration steps. Then, if each field is expressed by one of 
its Fourier components, for every iterative procedure it 
will be possible to write equation (A2) in the following 
brief notation : 

B and A being matrices whose elements depend on the 
particular iteration technique adopted. The symbol - over 
each field indicates. the time dependent amplitude of the 
corresponding Fourier component. It follows from defini- 
tion (A2) that if the iteration process is convergent, the 
differences should monotonically decrease for (i) bigger 
than a certain value i=I;  and if Richtmyer’s definitions 
[8] of the bound of a matrix are adopted, the convergence 
criterion will be 

3 It should bc mentioned that thc same difference scheme, when e=%, was already used 
by Uusitalo [SI in his storm surge computations for the North Sea. In this case, the author 
considered it necessary to include a Laplacian smoothing operator. 

Bound B-’A=Max v*(B-’A)*(B-’A)v<l. (A3) 
I V l = l  

With the aid of this inequality the convergence of some 
iteration procedures was studied, but for none of them 
was there found a condition less restrictive than the 
stability criterion obtained in the case of equation (2). 

These conclusions were verified with a FORTRAN program 
written to solve equations (Al), with e=1 and various 
iterations processes. Iterations imply in any case additional 
computer time. Therefore implicit systems are not prac- 
tical, if such a bound must be applied to  At. 

It should be noticed that in the previously mentioned 
paper by Uusitalo [9] the iteration scheme is not discussed, 
but the use of the Courant-Friedrichs-Lewy criterion 
probably avoids the appearance of the convergence 
problem. 
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